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TECHNIQUES AND APPLICATIONS FOR BINAURAL SOUND MANIPULATION IN
HUMAN-MACHINE INTERFACES

Durand R. Begault and Elizabeth M. Wenzel

Ames Research Center

SUMMARY

The implementation of binaural sound to speech and auditory sound cues ("auditory icons") is

addressed from both an applications and technical standpoint. Techniques overviewed include pro-

cessing by means of filtering with head-related transfer functions. Application to advanced cockpit

human interface systems is discussed, although the techniques are extendable to any human-machine

interface. Research issues pertaining to three-dimensional sound displays under investigation at the

Aerospace Human Factors Division at NASA Ames Research Center are described.

INTRODUCTION

In normal hearing we use both ears, which allows important advantages in interacting with the

environment. In spite of this, the auditory information in "high stress" human-machine interface

contexts such as aviation is usually received over a monotic (one-ear) headset. It is surprising that,

while advanced cab aircraft such as the McDonnell-Douglas MD-88 and the Boeing 767 incorporate

highly sophisticated visual displays, cockpit auditory displays are largely a proliferation of semanti-

cally unrelated warning sounds which take no advantage of the spatial information which plays so

fundamental a role in everyday experience.

Research into improving the human-machine interface is partially motivated by giving attention

to operator overload. For example, one source reports that at least 65% of jet transport accidents

during 1977-1987 resulted from human errors (Hughes, 1989). One direction for improvement is to

access perceptual systems other than vision for communicating important information to an operator.

Because spatial hearing is a part of everyday experience that is important for both survival and orien-

tation, it is sensible to determine how it can be manipulated for conveying information in a human-

machine interface.

The types of binaural sound manipulation that are feasible to implement depend on the source of

the signal. In an aircraft context, there are two distinct types of sources: (1) headphone speech com-

munication using radio transmission originating from ground control or other aircraft, and (2) speech

and warning signals that originate from the audio system installed in the cockpit.



For bothkindsof signals,binauralsoundcanimprovetheintelligibility of speechsourcesagainst
noise,andassistin thesegregationof multiplesoundsources.For signalsoriginatingin thecockpit,
soundspatializationcanalso be usedto organizelocations in perceptualauditory space,and to
conveyurgencyor establishredundancy.

This paperreviews bothestablishedand evolving techniquesfor the binauralpresentationof
sound.Although theexamplein theapplicationsectionof thepapermakesreferenceto commercial
aircraftcockpits,theresultsareextendibleto air traffic control(ATC), rotorcraft,sonardisplay,and
othermultiple-channelhuman-machineinterfaces.Thefirst sectionreviewsof binauralspatialization
techniques,along with relevantpsychoacousticconsiderationsfor their use.The secondsection
showshow thesetechniquescanbeusedfor improvingcockpitauditorydisplays.

This work was performed while the author held a National ResearchCouncil research
associateship.

2



BINAURAL TECHNIQUES AND PSYCHOACOUSTIC CONSIDERATIONS

Spatial hearing refers to the perceived location, size and environmental context of a sound

source. In the case of headphone audition, three categories of techniques for manipulating the spatial

element of sound are discussed: lateralization, headphone localization, and decorrelation. These

categories are also generally (but not uniquely) distinguished by the kind of audio spatial percept that

results from the particular technique.

Lateralization techniques involve manipulation of interaural time and/or intensity differences at

each ear; the resulting percept is usually of the sound source moving along the intracranial axis

between the ears. Headphone localization techniques simulate spatial hearing in the free field or in

an environmental context, essentially by replicating over headphones the interaural differences that

occur naturally. In its most successful implementation, the resulting percept can be of an externalized

source in three-dimensional space. Decorrelation techniques implement interaural differences using

methods other than those mentioned above. In this paper, phase inversion and reverberation tech-

niques are examined.

Lateralization

Lateralization techniques take advantage of two separate mechanisms of the auditory system that

are involved in spatial hearing. One mechanism evaluates the amplitude differences at the two ears,

while another mechanism evaluates time differences. Human sensitivity to these differences support

what is known in the psychoacoustic literature as the "duplex theory" of localization: the differences

are abbreviated as interaural level difference (ILD) and interaural time difference (ITD), respec-

tively. It is widely accepted that ILD operates over the entire frequency range, while ITD operates on

the fine structure of signals for frequencies below 1.6 kHz, and on the envelope of the signal for

frequencies between approximately 200 Hz-20 kHz (Blauert, 1983).

If we present a signal to each speaker of a set of headphones with no ITD or ILD, the sound is
heard in the middle of the head. As ITD or ILD is increased past a particular threshold, the sound

will begin to shift toward the ear leading in time or greater in amplitude. Once a critical value of ITD

or ILD is reached, the sound stops moving along the intracranial axis and remains at the leading or

more intense ear. The effective range of ITD is up to approximately 1.5 ms, and the effective range

of ILD is around 10 dB. The upper range of ILD is more difficult to determine than ITD: beyond

approximately 10 dB, a change in position resulting from ILD is easy to confuse with the

corresponding change in auditory extent that occurs around this point (Blauert, 1983). Figure 1

shows these differences rated by subjects on a 1 to 5 scale, where 5 represents maximum

displacement. The results shown are valid for speech and noise.

It is relatively easy to implement a ITD/ILD digital signal processing algorithm based on the data

in figure 1. For example, consider placing a signal at the extreme left position in the head. We derive

the left and right channel outputs y(n)L and y(n)R from an input signal x(n) by multiplying by a

gain factor g for ILD:

y(n)L = x(n) y(n)R = x(n). g, g _ .3

3
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Figure 1. Measurements of interaural differences on lateralization, a) ILD; b) lTD.

and by delaying the input signal by '_ for ITD:

y(n)L = x(n) y(n)R = x(n + x) x = 1.5 ms

Figure 2 shows the waveform and circuit diagram displays for these lateralization techniques.

In practical terms, the perceptual effects of ILD and ITD in lateralization can be thought of as

additive. Usually, ILD and ITD are pitted dichotically against each other ("traded") in the psychoa-

coustic literature so as to produce a centered, intracranial position of the perceived sound. Figure 3

illustrates how ILD and ITD can be combined to produce three distinct spatial locations for incoming

sounds. In this example, three different radio frequencies are heard in three distinctly different spatial

locations: extreme right, extreme left, and center of the head.

The spatial positions attainable using lateralization techniques are severely limited when they are

compared to spatial hearing in the real world. Lateralization techniques allow positioning sounds

along a line centered between the ears, inside of the head. A more desirable condition would be to

have the ability to place sounds outside of the head in any position in three-dimensional space, using

headphones.

Headphone Localization

At one time, the term "headphone localization" would be considered an oxymoron. Localization

was thought to be only possible with "real world" (nonheadphone) listening, and all headphone lis-

tening was assumed to be lateralized. Plenge (1974) was one of the f'u'st researchers to demonstrate

that localization was indeed possible with headphones. The basis for his argument was based on

subjective judgments of externalization of a sound source when recorded with a mannequin head

4
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Figure 2. Waveform display and circuit diagrams for lateralization techniques, a) ILD; b) lTD.
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Figure 3. Circuit scheme combining ITD and ILD lateralization techniques to spatially separate three

inputs (e.g., radio transmission).

with microphones behind the pinnae. Recent work by Wightman and Kistler (1989b) has reasserted
the notion that externalized localization of sounds in three-dimensional space is possible with head-

phone listening; their work differs from Plenge in that they substituted digital signal processing

techniques for the mannequin head recording process, a technique first used by Platte and Laws

(Blauert, 1983). This technique, and its advantages and limitations, are reviewed below.
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The technique for implementing headphone localization involves creating a digital filter based on
measurements of the head related transfer function (HRTF). The HRTF can be thought of as a

frequency-dependent amplitude and time delay that results from the resonances of the pinnae and the

ear canal, and the effects of head shadowing. These effects combine differentially, as a function of

sound source direction; hence, there is a frequency and group delay transfer function imposed on an

incoming signal that is unique for any given source position. In other words, the spectrum of the

HRTF alters the spectrum of the input signal in a spatially dependent way.

Psychoacoustic research has established the importance of the HRTF for spatial hearing partly

because it complements the "duplex theory" of localization. It explains median plane perception of

elevation and front-back positions, situations where the ILD and ITD are close to 0 and/or below

threshold. Other researchers have shown that localization acuity is diminished overall without pinnae

cues (Parker and Oldfield, 1984).

The HRTF is measured by placing a probe microphone close to the eardrum of a subject, or at

the entrance to the ear canal (Mehrgardt and Mellert, 1977; Wightman and Kistler, 1989a). The goal

is to obtain an impulse response for use in subsequent digital filtering algorithms, and a spectral

measurement for purposes of analysis. In simplified terms, an impulse x(n) is sounded from a

speaker at a carefully adjusted position in relation to a listener whose head is immobilized. The

signal at the microphone y(n) is then recorded, and the procedure is repeated for the desired number

of positions. The impulse response of h(n) (the HRTF for that position) is therefore obtained via the

convolution of the speaker signal with its path of transmission to the microphone:

y (n) = x(n) • h(n)

Since x(n) is the the unit-sample impulse (x(n) = 1), it follows that h(n) = y(n). By taking the

Fourier transform of h(n)

H(eJt°) = 2 h(n)e-Jt°n

we can obtain the frequency and phase response of the HRTF: in essence

n(0J°)-
Figure 4 shows the magnitude of the HRTF for a single subject for different angles of incidence.

To implement HRTF processing for headphone sound, the spectrum of the incoming sound must

be multiplied by the spectra of two HRTF measurements, one for each ear. This is accomplished

digitally by the equivalent operation of time-domain convolution, using two finite impulse response

(FIR) filters (Oppenheim and Schafer, 1975):

y(n)L = x(n) • h(n)L; y(n)R = x(n) • h(n)R
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Figure 4. HRTF measurements: one subject, ipsilateral ear, source at 0, 90, and 270 ° azimuth (based

on data from Wightman and Kistler, 1989a).

Figure 5 shows this method. The frequency responses of two filters for synthesizing a source

directly opposite the right ear are shown. (Frequency response of the HRTF shown was given by

Blauert and then derived by Begault using a digital filter design program (Begault, 1987; Blauert,

1983).)

How successful is the technique, in terms of producing a veridical experience of three-

dimensional auditory space? Figure 6 illustrates results obtained by Wightman and Kistler (1989b)

that compare free-field and headphone localization performance. The data for both conditions seem

in close agreement, but it must be noted that front-back reversals (e.g., mistaking a 0 ° sound source

for a 180 ° sound source) were corrected in the data analysis. These reversals increased in the head-

phone case. Based on data from eight subjects, the percentage of front-back confusions from the total

number of judgments made with free-field listening is 3-12%, and 6-20% with headphone localiza-

tion. Individual differences were also marked; the subjects who localized badly over headphones also

tended to be the ones that localized badly in free-field conditions.

There is a problem with the technique in that some people are unable to externalize HRTF-

processed sound heard through headphones. This is particularly troublesome for simulating sound

sources on the median plane; sources synthesized to appear from the front of the listener usually

sound as if they are inside of the head. Often, a "bow tie" pattern is perceived when a circle with

constant radius from the center of the head is specified (see fig. 7).

We propose three areas for improving headphone localization performance: (1) using a dynamic

filter in conjunction with a head-tracking device to allow auditory search and orientation to the

virtual sound position, (2) adding environmental cues in the form of reverberation and/or early

reflections, and (3) obtaining or synthesizing "optimal" HRTFs.



A magnetichead-trackingdevice that is attached to a set of headphones can transmit three-

dimensional coordinates about a listener's head and body position to a receiving device. At Ames,

Wenzel and Foster have developed a hardware/software system known as the Convolvotron

(Wenzel, Wightman, and Foster, 1988) that takes the output coordinates of the tracker and assigns

appropriate FIR filters to an input source (see fig. 8). Because the granularity of head movement

recorded by the tracker is finer than that of the sampling of the number of positions by the HRTF

filters, an interpolation scheme must be used to derive the appropriate impulse response for the FIR

filters for intermediate positions.
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0 20000 Hz

Frequency->

HRTF spectrum:
measured at left ear
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Inpu_ I #1 I "-%1

L._ FlR#_filter _CI_

_ Right

HRTF spectrum:
measured at right ear

Figure 5. Headphone localization technique based on HRTF filtering.
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Figure 7. Perceptual result of HRTF filters. Positions frequendy reported by subjects when presented

with stimuli processed to sound equally distant from the center of the head. Note difficulty in

externalizing sounds synthesized to the front and rear.

Another solution to headphone localization errors is to add "environmental" cues. With the

method of HRTF filtering described above, the stimulus is convolved with measurements made

under anechoic conditions. It lacks environmental information in the form of early reflections and

reverberation that also is convolved with a sound source in most listening contexts. Early reflections

in normal spatial hearing arrive differentially at the two ears in terms of time of arrival, intensity, and

spatial angle of incidence. This situation can be modeled with a ray-tracing computer program that

accounts for the dimensions of the enclosure and the position of the listener and sound source. Fig-

ure 9 shows one such program Begault developed at Ames. Late reflections (reverberation) may also

play a role in externalization and front-back confusions; manipulation of the ratio of direct to rever-

berant sound has been shown to affect perception of auditory distance (Begault, 1987; von B6kEsy,
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1960). An increase in the number of synthesized reflections results in a corresponding change in the

ratio of energy of the early reflections to the direct sound, and the sound is less spatially correlated in

its direction of arrival with respect to the listener.

Another area for improvement has to do with the HRTF itself. If we want to use headphone

localization techniques for the general population, can we use a single "set" of HRTF measurements,

and if so, how do we derive it? There are essentially two general approaches: averaging methods,

and using the HRTFs of a "good localizer." In the first approach, one gathers HRTF data from a
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Figure 9. Example of user interface for the ray-tracing program used at Ames for synthesizing

early reflections.

number of subjects and uses some method of averaging the data. Examples can be found in the work

of Blauert and Mehrgardt and Mellert (Blauert, 1983; Mehrgardt and Mellert, 1977). Another form

of averaging is to use techniques such as principal components analysis to find significant features

within each critical band. The second approach, which we are currently examining at Ames, is to use

the HRTFs of a good localizer, i.e., someone whose localization performance both with and without

headphones is superior compared to other subjects tested under the same conditions. The problem

with the averaging approach is that individual differences in the magnitude and phase characteristics

of the transfer function become "smoothed out," resulting in a transfer function with less extreme

minima and maxima. The problem with the good localizer approach is not knowing to what degree

the subject's performance was idiosyncratic. We anticipate that research using both approaches will

help to converge on a set of generalized HRTFs.
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Decorrelation

Lateralization and headphone localization techniques both transform a single input signal into

two different output signals for each ear. This can be viewed as a decorrelation process. However,

ILD, ITD, and HRTF filtering are not the only methods for producing binaural decorrelation. Two

techniques that can significantly affect both the spatial and timbral dimensions of a sound are phase

inversion and multiple delay lines (see fig. 10). While the number of techniques for differentiating

two signals from a single one are perhaps innumerable, the use of phase inversion and multiple delay

lines is well-known and straightforward in their implementation. Additionally, many decorrelation

processes are based on combinations of these techniques.

Front

Left @ Right

] = Intracranial location ot composite signal

[] = Diffusion of low frequencies < 1.6 kHz

a) Input _ Left

Right

yVr V

Left

Stereo

output

Input

Figure 10. Decorrelation techniques, a) Phase inversion; b) cascaded delay line with interaural shift.
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Phaseinversionanddelay line decorrelation as described here do not affect the percept of the

localization of the "center of gravity" of a broadband signal. Rather, it affects the "diffuseness" or

spatial extent of a sound source. For example, two sounds can both be localized intracranially, but
the decorrelated sound will seem to be more "spread out" than the correlated one (see fig. lO(a)).

With binaural phase inversion of speech, the spreading out effect occurs primarily with the lower

frequency components. An explanation for this phenomenon can be given in terms of the frequency

selective nature of ITD perception. As mentioned previously, sensitivity to the ITD of the fine struc-

ture of a waveform operates only below approximately 1.6 kHz, while sensitivity to the ITD of a

waveform envelope operates between 200 Hz-20 kHz (Blauert, 1983). With 180 ° phase inversion,

the envelope of the signals is identical at the two ears, but the fine structure of each harmonic com-

ponent is time delayed by a half-cycle. Speech contains frequencies within the operating range of
both forms of ITD, hence, a differential spreading of sound occurs as a function of frequency.

A multiple delay line is another method of producing two decorrelated signals from a single

input. Figure 10(b) illustrates a simplified version of a program available on a typical stereo digital

delay device. This circuit adds four time delays to the signal within an approximately 25 ms period,

resulting in a timbral change to the signal that is similar to the effect of early reflections heard from

walls in a small room. Additionally, by implementing a slight (< 2 ms) time shift between the delay

pattern at each channel, the sound image is perceived as being larger or more spread out, as with the

phase inversion technique. This process is similar to the interaction of a sound source within an

environmental context: timbral changes result because of decorrelated patterns of reflected sound.

13



APPLICATIONS OF BINAURAL SOUND

Introduction

This section overviews two application areas for binaural sound to aircraft auditory displays. The

first is applicable to speech radio transmission, and both apply to speech and warning signals that

originate in the cockpit. These areas are Increased Sensitivity for Communication (using the binaural

advantage over monotic or diotic listening for intelligibility of speech and segregation of a desired

source from multiple sources), and Cognitive Representation of Auditory Space (using perceived

auditory spatial positions as carriers of semantic information). Three types of applications are

discussed: urgency (using auditory space to indicate the "levels of urgency" of an auditory warning

transmitted with a nonspatial grammar), redundancy (organizing different perceived auditory spatial

positions into a grammar that is redundant to a verbal or iconic grammar), and location (the use of

perceived location of auditory icons to indicate position of exocentric objects).

Increased Sensitivity for Communication

The difference between a binaural and a diotic system is more profound than simply being an

issue of increasing the "pleasing" or "spacious" dimensions of the sound, which is the usual criteria

in a commercial application. More important is the fact that using both ears compared to one ear

allows a listener important advantages in interacting with the environment, specifically, in suppress-

ing undesirable auditory input such as noise, and to allow localization of sound sources to discrete

positions in auditory space.

These two advantages work together to allow perceptual segregation of multiple inputs of sound

by the listener. This is exactly what recording engineers do when they mix multitrack recordings:

they create a synthetic spatial display of sound sources for two-channel delivery, so that a listener

can clearly separate the multiple layers of sound sources. Although two-channel delivery is not the

only means of separating sources, it is a powerful one that we use in everyday listening. This

binaural advantage can be easily demonstrated by listening with one ear plugged to a person spea k in

a noisy environment. The noise seems to interfere less with speech when both ears are open. This is

in stark contrast to the situation where a pilot must listen to many undifferentiated voices coming

over a monotic headset. Indeed, aviation accidents may have occurred because a pilot was unable to

attend to the "correct" voice out of the several that he hears coming over the single-channel radio

transmission.

Studies by Cherry (1953) and Cherry and Taylor (1954) established the existence of what is

commonly called "the cocktail party effect" and its relation to binaural hearing. The term comes

from the observation that in a group of people who are all speaking simultaneously, it is still possible

to understand a single stream of speech. This has led to a number of studies comparing intelligibility

of speech under binaural and monaural presentation. The difference in dB between a masker level

(noise or other voices) and the necessary level for intelligibility of the desired signal is measured for

both monotic and dichotic conditions. The difference between the two cases, i.e., the improvement in

intelligibility due to binaural presentation, is termed the binaural intelligibility level difference, or

BILD. Results from experimental data evaluating the BILD differ depending on the stimuli used, and

14



criteria for evaluatingintelligibility; generally,it rangesfrom 3 to 12dB (Blauert, 1983).Koening
(1950)also describedtheadvantageof binauralover monauralhearingfor squelchingnoise;his
resultswereverified with burststimuli by Zurek(1979).

Work by BronkhorstandPlomp(1988)measuredthe BILD asafunction of angleof incidence,
usingconditionsthatessentiallycomparethelateralizationtechniquesdiscussedearlier (pureITD or
ILD) to headphonelocalization techniques(listening throughthe earsof a mannequinhead).Fig-
ure 11 showstheir results; the improvementusing headphonelocalization techniquesis around
2-4dB.
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Figure 11. BILD measurements as a function of azimuth: comparison of ILD, ITD, and HRTF-

filtered conditions (based on data from Bronkhorst and Plomp, 1988).

Informal studies were conducted at Ames using HRTF filtering techniques. Although the BILD

was not measured, the externalization provided by HRTFs with maximal ITD (60, 90, 240 and

300 ° azimuth) were judged to be superior for selective attention to four voices, compared to ILD or

ITD techniques. Additional information can be found in NASA TM-102826.

Because of binaural summation of loudness, a binaurally equipped pilot would also need less

amplitude of the signal at each ear, giving an additional advantage in suppressing hearing fatigue.

Some pilots object to using headphones on the basis that it isolates them from other crew members.

It is possible to alleviate this by using microphones in a monitoring system arrangement. Speech
from crew members could be mixed into the overall sound texture of air traffic control (ATC) and

cockpit warnings. This has the added advantage that repositioning the body and raising the level of

the voice to be heard above background noise (the Lombard effect) could be avoided, resulting in

less fatigue.
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Cognitive Representation of Auditory Space

Introduction-- A binaural auditory simulation of sound can potentially define a synthetic space

within the "mind's aural eye." We define a "synthetic space" as the listener's organization of the

location of sounds within the mind, by using mental imagery. It involves representation that is

primarily visual, rather than propositional, in content.

The idea that an analog or imagery-based representational system exists is supported by studies

of mental transformations of spatial objects (Cooper and Shepherd, 1978), imagery (Kosslyn, 1981),

and cognitive maps (Goldin and Thorndyke, 1982; Kuipers, 1980). Although imagery based on audi-

tory input has not been well studied, experiments concerned with auditory and visual perceptual

biases clearly indicate that the two systems interact in the encoding of spatial information (Bertelson

and Radeau, 1981).

Spatially correspondent analog representations are also supported by the importance of localiza-

tion for survival. Spatial pattern recognition would seem to be a fundamental requirement for animal

survival in an environment in which many events occur simultaneously in different spatial locations.

Especially in the absence of visual stimuli, it is likely that imagery-based modes of thinking occur in

connection with spatial hearing. From an applications standpoint, we are interested in eliciting a map

of auditory space in the listener so that we can convey semantic meaning as a function of position.

The application of spatial audio to auditory warning systems has been discussed previously in the

literature, albeit from many different perspectives. Some experiments manipulated spatial cues in a

simplistic manner (e.g., using only interaural intensity differences) or used "impoverished" stimuli,

such as pure tones (Mudd, 1965). Doll et al. (1986) concluded from their research that a system of

binaural cues for cockpit systems would be beneficial. They used a mannequin head recording

technique for auditory spatialization. Examples of applications described below use the

lateralization, headphone localization, and decorrelation techniques described previously.

Urgency- A pilot should be able to immediately discern whether a command is urgent well

before the command itself is interpreted. An analogy is to the kind of communication parents reserve

for their children when they have erred substantiallymthe children can immediately tell from the

pitch and intensity of their parents' voice that they had better pay attention, well before they actually

realize the semantic content of the message.

Figure 12 shows a possible spatial audio map for establishing a simple spatial grammar that indi-

cates whether a command is urgent or not. The spatial positions shown could be applied for indicat-

ing the relative urgency of a command. The numbered dots represent perceived positions: position 1

was synthesized with a diotic signal, position 2 was synthesized with a dichotic time delay differ-

ence, and position 3 was synthesized with a dichotic time delay and amplitude differences.

One possible semantic organization for this set of positions is for the most urgent warning to be

processed according to position 1. Less urgent commands are assigned to position 2 or 3. If a sound

is transformed from the perceived left side positions to one directly inside of the head, there is a sort

of "infringement" of the listener's personal space. It is suggested that, with minimal training, a pilot
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2. Interaural time difference

ntiacranial axis

3. Interaural time and amplitude 1. No interaural difference
difference ("urgency space")

Figure 12. A possible topography of perceived auditory spatial positions.

could easily associate a sound inside the head as occupying an urgency space, relative to sounds that

are perceived to the sides.

Another possibility is that the same spatial topography could be used in relation to repetition of a

warning signal. The repetition of a command implies urgency, because the fact that it is repeated
means the action has not been taken. For example, the first time a command is given, it comes from

position 3 on the left, the second time from position 2 on the left, and the third time from position 1.

By reversing output channels, the signals used to obtain position 2 and 3 can be used to obtain

two other positions (4 and 5) at mirror image locations symmetrical from the center of the head. An

example of the elaboration of the spatial grammar is as follows: place one class of commands to the

left (2 and 3); and one to the right (4 and 5), which reserves position 1 for urgent commands. Using

Traffic Collision Avoidance System (TCAS) voice command classifications as an example, traffic

commands could come from 2 and 3, nonurgent resolution commands could come from 4 and 5, and

urgent resolution commands could come from position 1.

A command originating from the urgency space can be further distinguished by using decorre-

lation techniques. The multiple delay technique described earlier in section 2 can be applied to

sounds from position 1 to underscore their urgency. Urgency as a function of location would in this

way be re-emphasized by changes in timbre and image size, further differentiating urgent from

nonurgent commands. This use of lateralization and decorrelation techniques to define an urgency

space is an application of a redundancy strategy.

Auditory icons and redundancy- The cockpit work environment contains a wide range of

different auditory input set against a fairly high level of ambient noise from the engine and outside

sources. The pilot must extract meaning from vocal communication with other people present in the

cockpit, while simultaneously attending to a range of alarms, signals, and automated voice instruc-

tions. Depending on the particular on-board system, there are approximately 200-500 different types

of warnings that can be potentially displayed to a pilot. In any communication system between

source and receiver, redundancy of an intended message assures a better chance of the extraction of a

desired signal from noise.

17



Thereareredundantparadigmswhereinformationis encodedmore thanonce.For instance,in
the pulse code modulation (PCM) standardfor digital encoding of auditory signals,an error
correctionschemeis usedwhere30%or moreof thedigital signal is literally replicatedon a tape
(Nakajimaet al., 1983).Contrastingthis is a redundancyparadigmwhereidentical semanticsare
conveyedwith different signs.An everyday example of the latter technique is the use of international

traffic signs in the United States (see fig. 13A). Two different types of signs, iconic and verbal,

transmit the same message. The icon can be interpreted more quickly than the verbal symbol; the

verbal symbol is redundant to reduce the possibility of misinterpretation.

A similar method is possible for including redundancy in TCAS messages. The technique is to

link each verbal message with an appropriate auditory icon, and then precede the verbal message

with the icon upon presentation (see fig. 13B). The advantage to this is that the semantic content can

be grasped quickly by recognizing the auditory icon, and can then be verified by the verbal icon.

This idea has been suggested in several studies; for example, Patterson (1982) suggests a technique

where verbal commands are "sandwiched" temporally between auditory icons.

A. B.

NO
LEFT
TURN

Verbal message

Recognition period:

A B C

Time

Figure 13. Identical semantic content achieved with combinations of nonverbal and verbal

semiology.

Redundancy has been discussed so far in the context of a sequential, differentiated process of

communication, where two types of semiotic objects follow one another in time. But redundancy can

also be established by presenting a pilot with multiple percepts that parallel one another during the

same time interval. Multi sensory cues have begun to be used as redundant indicators in some

advanced aircraft. For example, some modern aircraft use visual, auditory, and tactile cues (red light,

warning horn, and a stick shaker) for indicating aircraft engine stall. The supposition is that by

accessing multiple perceptual pathways to the pilot at the same time, the chance of error is reduced

(Mowbray and Gebhard, 1961).

It is also possible to achieve parallel redundancy in a purely aural manner. The manipulation of

auditory space for this purpose is possible as long as the semiology of position is somewhat limited.

Returning to the concept of indicating urgency by spatialization to a center position (position 1 in
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figure 12), the "invasion" of a sound into urgency space can be combined with an appropriately

urgent auditory icon. In this case both the icon and the spatial position of the sound simultaneously

warn a pilot of urgency. Hence, a limited grammar of spatial sound manipulation could be used with

urgent aural icons to further establish an urgency space.

Location of auditory cues in relation to exocentric objects- Perhaps the most advanced use of

spatial cues is to implement a headphone localization system where the location of an object in three-

dimensional space is paralleled by its perceived auditory position. Related research is under way at

Ames' virtual environment project VIEW (Fisher et al., 1988). In a telerobotics application of

VIEW, an example would be to use spatialized auditory cues to indicate the position of objects near

a robot, such as a spacecraft. With three-dimensional sound, the position of objects associated with

these auditory cues can be monitored without having to capture their position visually.

Headphone localization is applicable to cockpit warning systems that require communication of

positional information. Even a sound display limited to one elevation (e.g., at head level) with a

sampling of positions along the 360 ° azimuth would be useful in a cockpit environment. For exam-

ple, a pilot maneuvering through a busy airport approach would be able to use an auditory spatial

grammar based on the 12 hour hand clock positions, conceiving themselves in the center of the clock

with 12 at 0 ° azimuth and 6 at 180 ° azimuth. If a pilot heard a TCAS warning that stated, "traffic at

8 o'clock," a headphone localization technique could provide redundancy by placing the perceived

position at 120 ° azimuth. The problems with front-back reversals mentioned previously limits the

ability. It is still currently unfeasible to relate all 12 clock positions in a virtual space to perceived

positions with absolute confidence.

With continued research, the externalization and front-back reversal problems inherent in

headphone localization should be alleviated. It is definitely possible to use a limited number of

HRTF-synthesized positions, especially for conveying positions to the sides; their effect has been

found by several authors as an improvement over traditional intensity or time difference stereo

techniques for creating spatial auditory displays (Begault, 1986; Griesinger, 1989; Kendall and

Martens, 1984).
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CONCLUDING REMARKS

Three techniques for controlling the binaural sound image--lateralization, headphone localiza-

tion, and decorrelation--have been discussed in terms of implementation, perception, and current

areas of research, including efforts at Ames. This was exemplified by showing an application of

binaural sound to cockpit speech and warning systems. Improvements in the intelligibility of speech

and segregation of multiple source inputs were outlined. In addition, suggestions were made for the

use of the mapping of auditory space to convey urgency, redundancy, and position within an

auditory display. Using the techniques outlined would provide powerful control over a vivid

perceptual faculty.
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